THE CONSISTENT CRITERIA FOR CHECKING HYPOTHESES IN HILBERT SPACE OF MEASURES

ZERAKIDZE ZURAB & SOKHADZE GRIGOL ^b

e-mail: <u>grigol.sokhadze@tsu.ge</u> ^{a,b} Depattment of Mathematics, Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, 2 University Str., Tbilisi 0186, Georgia

Let \mathcal{H} be set of hypotheses and $\mathcal{B}(\mathcal{H})$ is σ -algebra of all finite subsets \mathcal{H} -oqos5. The family of probability measures $\{\mu_H, H \in \mathcal{H}\}$ will be said to admit a consistent criterion of hypotheses if there exists even though one measurable map $\delta : (E, S) \rightarrow (\mathcal{H}, \mathcal{B}(\mathcal{H}))$, such $\mu_H(x : \delta(x) = H) = 1$, $\forall H \in \mathcal{H}$. The family of probability measures $\{\mu_H, H \in \mathcal{H}\}$ will be said to admit unbiased criterion of any parametric function if for any real bounded measurable function g(H) on $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$ exists even though one real bounded measurable function f(x) on (E, S), such that $\int_E f(x)\mu_H(dx) = g(H)$. Let M^δ be linear real space of all alternating finite measures on S. Linear subset $M_H \subset M^\delta$ is called a Hilbert space of measures if: 1. One can introduce on M_H a scalar product $\langle \mu, \nu \rangle$, $\mu, \nu \in M_H$ such that M_H is Hilbert space and for every mutually singular measures we have $\langle \mu, \nu \rangle = 0$; 2. if $\nu \in M_H$ and |f| = 1, then $\nu_f(A) = \int_A f(x)\nu(dx) \in M_H$, where f(x) is S-measurable real function and $\langle \nu_f, \nu_f \rangle = \langle \nu, \nu \rangle$.

Theorem. Let M_H be a Hilbert space of measures, then in there exist a family of pair wise orthogonal probability measures $\{\mu_H, H \in \mathcal{H}\}$ such that $M_H = \bigoplus_{H \in \mathcal{H}} M_H(\mu_H)$ where $M_H(\mu_H)$ is Hilbert space of elements V of the form: $V(B) = \int_B f(x)\mu_H(dx), \quad \int_E |f(x)|^2 \mu_H(dx) < \infty$.