Boundedness of Stein's spherical maximal function in variable Lebesgue spaces and

application to the wave equation

Tengiz Kopaliani

tengiz.kopaliani@tsu.ge

Department of Mathematics, I. Javakishvili Tbilisi State University, University St. 2

Alberto Fiorenza

Dipartmento di Costruzione e Metodi Matematici in Architettura Universit a di Napoli Via Monteoliveto, 3 I-80134 Napoli, Italy

Amiran Gogatishvili

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Zitna 25 11567 Prague 1, Czech Republic

Define the spherical maximal operator M_{σ} , by

$$M_{\sigma}(f)(x) = \sup_{t>0} \left| \int_{S^{n-1}} f(x-t\theta) d\sigma(\theta) \right|, \qquad f \in S(\mathbb{R}^n),$$

where $d\sigma$ denotes the normalized Lebesgue measure on the unit sphere S^{n-1} of space R^n . The maximal operator M_{σ} is bounded on $L^p(R^n)$ if and only if p > n/(n-1), and this range of p is optimal. E.M. Stein proved this in three or more dimensions, J. Burgain in two dimensions.

We prove that if $p: \mathbb{R}^n \to (0, \infty)$ $n \ge 3$ is globally log-Holder continuous and its infimum p_- and its supremum p^+ are such that $\frac{n}{n-1} < p_- < p^+ \le (n-1)p_-$, then the spherical maximal operator is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$. When n = 3, the result is then interpreted as the preservation of the integrability properties of the intial velocity of propagation to the solution of the intial-value problem for the wave equation.