Reduction of a Three-Layer Semi-Discrete Scheme for an Abstract Parabolic Equation to Two-Layer Schemes. Explicit Estimates of the Approximate Solution Error

Jemal Rogava ^a David Gulua ^b e-mail: jemal.rogava@tsu.ge e-mail: d_gulua@gtu.ge ^a Department of Mathematics, Iv. Javakhishvili Tbilisi State University, 2 University St., 0186 Tbilisi, Georgia ^b Department of Computer Engineering, Georgian Technical University, 77, Kostava St., Tbilisi, Georgia

Let us consider the following evolutionary problem in the Banach space X:

$$\frac{du}{dt} + Au(t) = 0, \quad t \in]0, T], \quad u(0) = u_0,$$
(1)

where (-A) is the generating operator of a strongly continuous semi-group; u_0 is a given vector from X; u(t) is the sought abstract function with values from X.

We introduce on [0, T] the net $t_k = k\tau$, k = 1, 2, ..., n, with pitch $\tau = T/n$. A purely implicit three-layer semi-discrete approximation scheme of second order is considered for an approximate solution of equation (1). Using the perturbation algorithm, this scheme is reduced to two two-layer schemes, one of which corresponds to the zero degree and the other to the first degree of a small parameter (here τ plays the role of a small parameter). The solutions of these schemes are respectively denoted by $u_k^{(0)}$ and $u_k^{(1)}$. Let the vector $v_k = u_k^{(0)} + \frac{\tau}{2}u_k^{(1)}$ be an approximate value of the exact solution of problem (1) for $t = t_k$, $u(t_k) \approx v_k$.

The following theorem is true.

Theorem. Let A be a linear, densely defined closed operator in the Banach space X. Assume that the sector $|\arg(z)| < \varphi$, $0 < \varphi < \pi/2$, completely contains the spectrum of the operator A and for any $z \neq 0$ not belonging to this sector the condition $||(zI - A)^{-1}|| \le c_0 |z|^{-1}$, $c_0 = const > 0$, is fulfilled. Then the estimate

$$\left\|u(t_k)-v_k\right\| \leq c \tau^2 \ln\left(\frac{et_k}{\tau}\right) \left\|A^2 u_0\right\|, \quad k=2,\ldots,n,$$

is valied, where $u_0 \in D(A^2)$, the constant c > 0 does not depend on the solution of the initial problem.

Acknowledgement: The present work was supported by the Shota Rustaveli National Science Foundation within the framework of the project DI/13/5-106/12.