ON THE ESTIMATION OF A MAXIMUM LIKELIYHOOD OF TRUNCATED EXPONENTIAL DISTRIBUTIONS

LOMINASHVILI GIORGI ^a PATSATSIA MZVINAR ^b

e-mail:lominashvili1971@yahoo.com

^a Faculty of Faculty of Exact l Science, A.Cereteli Kutaisi State University, 59 king Tamar Str., Kutaisi 4600 ^bFaculty of mathematics and computers Sciences, Sukhumi, State University, 9 Polotovskaia Str., Tbilisi 0186,

Let X be a truncated exponentially distributed random value with density

$$f(x;\theta,\alpha,\beta) = \begin{cases} \frac{\theta e^{-\theta x}}{e^{-\alpha\theta} - e^{-\beta\theta}}, & \alpha < x \le \beta\\ 0, & x \le \alpha, \ x > \beta \end{cases},$$
(1)

where $\alpha < \beta$ and α , β , and θ are the unknown parameters. Let $X_1, X_2, ..., X_n$ be a random sampling of size *n* taken from the truncated exponential distributions given by (1). It is required to estimate α , β and θ by these observations. We do this by applying the maximum likelihood estimator.

A likelihood function has the form

$$L(x;\theta,\alpha,\beta) = \theta^n \left(e^{-\alpha\theta} - e^{-\beta\theta} \right)^{-n} \cdot \exp\left(-\theta \sum_{i=1}^n x_i\right) = \theta^n \left(e^{-\alpha\theta} - e^{-\beta\theta} \right)^{-n} \cdot \exp\left(-n\theta \overline{X}\right).$$
(2)

Theorem. Assume that we have the sample $X_1, X_2, ..., X_n$ of random values which are distributed according to law(1) where α , β and θ are the unknown parameters.

If $0 < \overline{X} < \frac{\beta + \alpha}{2}$, then the maximum likelihood estimate for θ exists and is the unique

root of the equation

$$\frac{1}{\theta} - \left(\beta e^{-\beta\theta} - \alpha e^{-\alpha\theta}\right) \left(e^{-\alpha\theta} - e^{-\beta\theta}\right)^{-1} - \overline{X} = 0.$$
(3)

This estimate is consistent and asymptotically effective. Also, $\alpha = X_{(1)} = \min(X_1, ..., X_n)$, $\beta = X_{(n)} = \max(X_1, ..., X_n)$.

Remark. If $\alpha = 0$ and $\beta = \infty$, then from (3) we obtain the classical case

$$\theta = \frac{1}{\frac{1}{n}\sum_{i=1}^{n} x_i}.$$

Computerized simulation of an exponential distribution with parameters $\alpha = 1$, $\beta = 2$ and $\theta = 2$ was carried out. For the sample of size n = 10000, we obtained the estimate $\overline{X} = 1,344$, $\hat{\theta} = 2,005$.

,