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 Let  
h

℘=M   is a homogeneous Riemann space where  h   is a compact semi-group of the Lie 

group ℘.  Manturov O. V. and J.A. Wolf  gives the classification for homogeneous Riemann spaces with 

a stationary point group acting irreducibly on a tangential space - these are the so-called homogeneous 

Riemann spaces with an irreducible isotropy group [1], [2].    
We have the following expansion at a direct sum: 
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where H  and G  are the compact Lie algebras corresponding to the Lie groups h  and ℘, respectively, 

and B  is a linear subspace of the G , which is invariant with respect to the transformation HhAd h ∈),( , 

on the G . Linear space B  called the algebra isotropy of the homogeneous space M . Any invariant 

tensor with respect to the algebra of isotropy B  generates invariant tensor field on the homogeneous 

space. 

For the homogeneous space considered here, groups of isotropy are linear groups given by some 

irreducible isotropic representations ϕ  of the Lie algebra H , of the corresponding homogeneous 

Riemann space 
h

℘=M .   

We consider the tensor square of an irreducible isotropic representation ϕ  and makes it expands 

into a direct sum of irreducible components: 
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where iϕ are the irreducible representation of the Lie algebra H  and 
i

kϕ are their multiplicities. Using 

the Shur’s lemma, we calculate the dimensions of spaces of invariant tensor fields of valence 3 and 4. 

Our main results is the following (to appear in "Journal of Mathematical Sciences", Springer. 
Journal no. 10958): calculating this dimensions when for the homogeneous spaces the subgroup  h  has 

the type of a simple algebra 1, ≥nAn   and  2,1 ≥+ nBA n . 
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