Denjoy-Luzin systems and unconditional convergence in Banach spaces

Vakhtang Kvaratskhelia^a, Vazha Tarieladze^b E-mail: <u>v kvaratskhelia@yahoo.com</u> <u>vazhatarieladze@yahoo.com</u>

 ^a Department of Mathematics, Faculty of Exact and Natural Sciences, Laboratory of Mathematics,
Iv. Javakhishvili Tbilisi State University,
2, University Str., Tbilisi 0186, Georgia
^b Niko Muskhelishvili Institute of Computational Mathematics, Georgian Technical University,
8, Akuri str., Tbilisi 0160, Georgia

We call an infinite sequence (ξ_k) of random variables given on a probability space (Ω, A, P) a Denjoy-Luzin system if for an infinite sequence (x_k) of scalars the almost sure (a.s.) convergence of the series $\sum_{k=1}^{\infty} |x_k \xi_k|$ implies $\sum_{k=1}^{\infty} |x_k| < \infty$. We give a characterization of Denjoy-Luzin systems. Moreover, we show that if (ξ_k) is a Denjoy-Luzin system and (x_k) is an infinite sequence of elements of a Banach space X then a.s. unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series $\sum_{k=1}^{\infty} x_k \xi_k$ implies unconditional convergence of the series