ON THE CRAMER-RAO INEQUALITY IN AN INFINITE DIMENSIONAL SPACE

SOKHADZE GRIGOL ^a NADARAYA ELIZBAR ^b, PURTUKHIA OMAR ^c

e-mail: <u>grigol.sokhadze@tsu.ge</u> ^{a,b,c} Depattment of Mathematics, Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, 2 University Str., Tbilisi 0186, Georgia

Let, $\{\aleph, \Re, (P(\theta; \cdot), \theta \in \Theta)\}$ is a statistical structure, where \aleph separable, real Banach space, and Θ smooth manifold immersed in another separable, real Banach space Ξ . For every fixed $A \in \Re$ and a vector $\vartheta \in \Xi$ consider derivative of the function $\tau(\theta) = P(\theta; A)$ in a point θ along of ϑ . Denote this derivative by $d_{\theta}P(\theta; A)\vartheta$. For a fixed θ and ϑ it is the sign-changing measure and $d_{\theta}P(\theta, \cdot)\vartheta << P(\theta, \cdot)$. Than $l_{\theta}(x; \vartheta) = \frac{d_{\theta}P(\theta; dx)\vartheta}{P(\theta; dx)}$ is called a logarithmic derivative of the measure $P(\theta; \cdot)$ on parameter. Let $z(x) : \aleph \to \aleph$ be a differentiable vector field possessing the bounded derivative. Let $\beta_{\theta}(x; z(x))$ is logarithmic derivative of $P(\theta; \cdot)$ along z(x).

Lemma. Under regularity conditions for logarithmic derivatives $\beta_{\theta}(x;h)$ and $l_{\theta}(x;\theta)$ following equality is true $l_{\theta}(x;\theta) = -\beta_{\theta}(x;K_{\theta,\theta}(x))$, where

$$K_{\theta,\theta}(x) = E\left\{\frac{d}{d\theta}X(\theta)\vartheta \mid X(\theta) = x\right\}.$$

Let $\{\aleph, \Re, (P(\theta, \cdot), \theta \in \Theta)\}\$ be a statistical structure corresponding to random element $X(\omega) = X(\theta, \omega)$. Here \aleph is separable, real, reflective Banach space, $\Re - \sigma$ -algebra of the Borel sets. $\Theta \subset \Xi$ is open subset of separable, real Banach space Ξ . Let's assume that conditions of a regularity are fulfilled.

Suppose that $g(\theta) = E_{\theta}(T(X))$, where $T : \mathfrak{H} \to R$ is measurable mapping (statistics). Concerning statistics we shall accept one more condition of a regularity.

Theorem (Cramer-Rao inequality). Let's assume that conditions of a regularity I-V are fulfilled. Then

$$VarT(X) \ge \frac{\left(g'_{\mathscr{G}}(\theta)\right)^2}{E_{\theta}\beta_{\theta}^2(X; E(X'(\theta)\mathcal{G} \mid X))}.$$