Let $F(x, y)$ be the formal group law of geometric cobordism [6]. Following Quillen [7] we will identify it with the universal Lazard formal group law. Let $\omega(x) = \frac{\partial F(xy)}{\partial y}(x, 0)$.

In [3] V. M. Buchstaber has given the analytical solution of a functional equation for the exponent of the formal group law of the form

$$F_B = F_B(x, y) = \frac{A(y)x^2 - A(x)y^2}{B(y)x - B(x)y}.$$

Let us now present a minor modification of the analysis of F_B performed in [5] and to introduce

$$A(x, y) = \sum A_{ij}x^i y^j = F(x, y)(x\omega(y) - y\omega(x)).$$

We define the universal Nadiradze formal group law F_N by the obvious classifying map of the Lazard ring to its quotient ring by the ideal generated by all A_{ij} with $i, j \geq 3$.

In order to compute the Krčhevver genus on the coefficients of the formal group law of geometric cobordism in [4] the universal Krčhevver formal group law F_{Kr} is defined as

$$F_{Kr}(x, y) = xb(y) + yb(x) + \frac{b(x)b(y) - b(y)b(x)}{xb(x) - yb(x)} + \frac{b(x)b(y) - b(y)b(x)}{xb(y) - yb(x)}$$

where $\beta(x) = \frac{b'(x) - b'(0)}{2}$ and $b(x) = \frac{\partial F_{Kr}(xy)}{\partial y}(x, 0)$.

Our main result is the following (to appear in Russian Mathematical Surveys)

Proposition. One has $F_B = F_{Kr} = F_N$, and the coefficient ring is the the quotient of the Lazard ring by the ideal generated by all A_{ij} with $i, j \geq 3$.

References