Free and projective MV(C)-algebras

Revaz Grigolia

E-mail: revaz.grigolia@tsu.ge

Department of mathematics, I. Javakhishvili Tbilisi State University, Chavchavadze av. 1

It is well known MV – algebras are algebraic models for Lukasiewicz logic L.

An algebra $A = (A; \otimes, \oplus, *, 0, 1)$ is said to be *an MV-algebra* iff it satisfies the following equations: 1) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$; 2) $x \oplus y = y \oplus x$; 3) $x \oplus 0 = x$; 4) $x \oplus 1 = 1$; 5) $0^* = 1$; 6) $1^* = 0$; 7) $x \otimes y = (x^* \oplus y^*)^*$; 8) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

The unit interval of real numbers [0, 1] endowed with the following operations: $x \oplus y = \min(1, x + y), \quad x \otimes y = \max(0, x + y - 1), \ x^* = 1 - x, \text{ becomes an } MV \text{-algebra.} \quad \text{For } (0 \neq) m \in \omega$ we set $S_m = (\{0, 1/m, \dots, m-1/m, 1\}, \oplus, \otimes, *, 0, 1).$

An algebra $A = (A; \otimes, \oplus, *, 0, 1)$ is said to be *an MV(C)-algebra* if A is an MV-algebra and in addition it satisfies the identity: $2(x^2) = (2x)^2$.

Perfect MV -algebras are those MV(C) -algebras generated by their infinitesimal elements or, equivalently, generated by their radical, where radical is the intersection of all maximal ideals. The variety generated by all perfect MV -algebras is also generated by a single MV -chain, actually the MV -algebra C, defined by Chang. The algebra C, with generator $c \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$, with generator $C \in C$, is isomorphic to $C \in C$.

Theorem 1. An 1-generated free MV (C)-algebra $F_{MV(C)}(1)$ is isomorphic to C^2 with free generator (c, c^*) .

Theorem 2. Any m-generated finitely presented MV (C)-algebra A is projective.

Theorem 3. Any m-generated chain MV(C)-algebra C_k $(k \le m)$ is projective.

Theorem 4. Equational class of MV(C)-algebras has unitary unification type.